top of page
Haekios.png

[ Kosrano - Lo - Hækios ] >

[ KoloHæ ]

Molecule Vibration (aka "Sound") is what we interprets as signals

These words/phrases will be used when referring to nouns or adjectives that is related to sound.

[ Hækios ] - Sound

01 : Hækios

The Sound symbol is derived from the shape of a tunning fork.

 

If every noun in this chapter were to be written in full name

every noun will have the "Kosrano-Lo-Hækios" prefix

however, given enough context, we can omit most of the part and end up with "Hæ" as the prefix

when the prefix is omitted to "Hæ" only,

we can omit the "KosraNo" glyph and have the "Hækios" glyph stays

Haekios.png
164-h.png
012-ae.png
022-i.png
163-k.png
031-o.png
131-s.png

Pronunciation Inspiration

 

from "hibiki" in Japanese and "ækos" in Greek

Amplitude = Loudness

02 : Amp

We interpret Amplitude as Loudness, and Amplitude can be interpret as "how much it wiggles in space",

so "Kaxi" comes into play

Krosno_Thin.png
Haekios.png
Kaxi.png
Haekios.png
Kaxi-thin.png

[ Hækios - Kaxi ]

[ Hæ - Ka ]

Amplitude

Based on different species, different entities may detect amplitude differently.

Frequency = Pitch

03 : Freq

We interpret Frequency as Pitch, and Frequency can be interpret as "how much it wiggles in time",

so "Taxi" comes into play

Krosno_Thin.png
Haekios.png
Taxi.png
Haekios.png
Taxi-thin.png

[ Hækios - Taxi ]

[ Hæ - Ta ]

Frequency

Fundamental Frequency

​

In music theory, in human culture, the note A is 440 Hz, and humans use this as a reference point to create other pitches. Astralica does the similar thing : pick a frequency and let it be the default fundamental frequency. Keep in mind that the fundamental frequency can be changed when specieif, otherwise the default value is :

​

256 oscilations / 1 Kona Second

≈ 256 oscilations / 3 . 0237 6084 4852 9519 seconds

≈ 84 . 6627 8027 1053 32 Hz

In human music theory, 82.41Hz is the note E and 87.31 Hz is the note F and the fundamental frequency /Hætani/ which is 84.66278027105332 Hz falls in between that range (closer to note E) 

​

Haekios.png
Taxi.png
pfr_1.png
equ_02-def.png
pfr_1.png
pfr_0.png
pfr_0.png
opr_04-div.png
Klari_Square.png
Taxi.png

if the fundamental frequency is "Hæta-ni", then we can multiply that frequency by "f" to get "Hæta-f"

Octave

​

In music theory, a note "H" is said to be an octave higher than another note "L", we can say that

- "H" sounds similar to "L" but higher

- to humans, frequency for "H" is twice as "L" â€‹

​

KEEP IN MIND

​

an octave is not always "doubling the frequencies"

it is possible that different species may multiply different factors to get a note to be an octave away from another note

for humans, this factor is 2

​

This factor multiplied to get an octave away is called "Hæta - KosraNi - Kiamasæni" or "Hæta-Koi-Mani", which in some sense can be translated as "SoundTime - LivingBeing - Same" or "SoundFrequency - SoundTheSameToLivingBeings"

​

By convention, this factor is set to 2, but it can be set to other factors when specified or based on different scenarios and context.

Haekios.png
Taxi-thin.png
Krosni.png
equ_01-equal.png
equ_02-def.png
pfr_2.png

[ Hækios - Taxi - KosraNi - Kiamasæni]

[ Hæ - Ta - Koi - Mani ]

Octave Factor

Hoever, if you want to refer to the "distance" of an octave, not the factor we can use

Taxi-thin.png
Haekios.png
Krosni.png
equ_01-equal.png
Kaxi-thin.png
Klari.png
Haekios.png
Taxi-thin.png
Krosni.png
Kaxi.png
equ_01-equal.png
Klari_Square.png

[ Hækios - Taxi - KosraNi - Kiamasæni - Kaxi - Klari]

[ Hæ - Ta - Koi - Mani - Ka - Kla]

[ Hæta - MaKla ]

Octave

Pitch Selection

04 : Pitch Selection

Equal Division of Octave / Equal Temperament

​

one of the Tunning system is to divide an octave into a number of equal parts.​​

​

for Astralica, the "Traditional" tunning system is 16 EDO 

which is called "HætaMaKla - RuRa" which in some sense it means "Octave divided by 16"

Taxi-thin.png
Haekios.png
Krosni.png
equ_01-equal.png
Kaxi.png
Klari_Square.png
opr_04-div.png
bin_P.png

To state the notes, strictly speaker, it should be "HætaMaKla - <Number>RuRa"

just like how fraction works

Taxi-thin.png
Haekios.png
Krosni.png
equ_01-equal.png
Kaxi.png
Klari_Square.png
opr_04-div.png

<?>

bin_P.png

If we decided to use another division, we can state the number of divisions after "Ru"

and we will get "HætaMaKla - <NoteIndex> Ru <Octave Division>"

With enough context,

we can omit "Makla" and end up with "Hæta - <Note Index> Ru <Octave division>"

Taxi-thin.png
Haekios.png
Krosni.png
equ_01-equal.png
Kaxi.png
Klari_Square.png
opr_04-div.png

<note Index>

<octave division>

Taxi-thin.png
Haekios.png
opr_04-div.png

<note Index>

<octave division>

Factor Multiplication

​

This system is used by Pythagoras back in ancient Greek.

What he had did is multiplying a frequency by a factor to get a new note.

​

since multiplying by 2 does not create a new note (an octave is considered to be the same note)

the next factor he went is 3, or to clamp it, 1.5

in music theory, this is known as "Perfect 5th"

​

the next factor is not 4, because it is just 2 octaves, the next one is 5, or to clamp it, 1.25

in music theory, this is know as "Major 3rd"

​

we can keep going with different factors and end up with different notes.

sometimes factors made from smaller prime factors may 

Taxi-thin.png
Haekios.png
opr_04-div.png
pfr_3.png
pfr_1.png

[ Hæta - na Ru ni ]

Perfect fifth

Taxi-thin.png
Haekios.png
opr_04-div.png
pfr_5.png
pfr_1.png

[ Hæta - li Ru ni ]

Major 3rd

Taxi-thin.png
Haekios.png
opr_04-div.png
pfr_F.png
pfr_1.png

[ Hæta - ta Ru ni ]

Major 7th

factor Multiplication - Extend - Lattice Approach

​

LampLight, one of the well-known Microtonal Musician & a Conlanger uses a lattice (Chalaxatta) to describe pitches in Shasavic Music Theory.

​

In this case, we can also use "Warak" to achieve the same effect.

Summary

If you read through the whole thing, give yourself a pat at the back because that was actually a lot, here are all the things in one small section :

Haekios.png
Kaxi-thin.png

[ Hækios - Kaxi ]

[ Hæ - Ka ]

Amplitude / Loudness

Haekios.png
Taxi-thin.png

[ Hækios - Taxi ]

[ Hæ - Ta ]

Frequency / Pitch

Haekios.png
Taxi.png
pfr_1.png

[ Hækios - Taxi - Ni ]

[ Hæ - Ta - Ni ]

Fundamental Frequency

Haekios.png
Taxi-thin.png
Krosni.png
equ_01-equal.png

[ Hækios - Taxi - KosraNi - Kiamasæni ]

[ Hæ - Ta - Koi - Mani ]

Octave Factor

Haekios.png
Taxi-thin.png
Krosni.png
Kaxi.png
equ_01-equal.png
Klari_Square.png

[ Hækios - Taxi - KosraNi - Kiamasæni - Kaxi - Klari ]

[ Hæ - Ta - Koi - Mani - KaKla ]

[ Hæ - Ta - MaKla ]

Octave

Taxi-thin.png
Haekios.png
Krosni.png
equ_01-equal.png
Kaxi.png
Klari_Square.png
opr_04-div.png

<note Index>

<octave division>

[ Hækios - Taxi - KosraNi - Kiamasæni - Kaxi - Klari - <a>Ru<b>]

[ Hæ - Ta - Koi - Mani - KaKla - <a>Ru<b> ]

[ Hæ - Ta - MaKla - <a>Ru<b>]

[ Hæ - Ta - <a>Ru<b> ]

the Ath note in B EDO

bottom of page